OpenCV: CvEM
-
hallo allerseits,
kennt sich wer mit dem CvEM aus der machine learning library aus?
ich habe ein kleines programm gefunden, das punkte in n clusters groupieren kann. genauso brauche ich das auch. bloss scheitere ich an dem verständnis vom programm.danke schon mal!
lg
ann
-
hier mal das programm:
#include "ml.h" #include "highgui.h" int main( int argc, char** argv ) { const int N = 4; const int N1 = (int)sqrt((double)N); const CvScalar colors[] = {{{0,0,255}},{{0,255,0}},{{0,255,255}},{{255,255,0}}}; int i, j; int nsamples = 100; CvRNG rng_state = cvRNG(-1); CvMat* samples = cvCreateMat( nsamples, 2, CV_32FC1 ); CvMat* labels = cvCreateMat( nsamples, 1, CV_32SC1 ); IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 ); float _sample[2]; CvMat sample = cvMat( 1, 2, CV_32FC1, _sample ); CvEM em_model; CvEMParams params; CvMat samples_part; cvReshape( samples, samples, 2, 0 ); for( i = 0; i < N; i++ ) { CvScalar mean, sigma; // form the training samples cvGetRows( samples, &samples_part, i*nsamples/N, (i+1)*nsamples/N ); mean = cvScalar(((i%N1)+1.)*img->width/(N1+1), ((i/N1)+1.)*img->height/(N1+1)); sigma = cvScalar(30,30); cvRandArr( &rng_state, &samples_part, CV_RAND_NORMAL, mean, sigma ); } cvReshape( samples, samples, 1, 0 ); // initialize model's parameters params.covs = NULL; params.means = NULL; params.weights = NULL; params.probs = NULL; params.nclusters = N; params.cov_mat_type = CvEM::COV_MAT_SPHERICAL; params.start_step = CvEM::START_AUTO_STEP; params.term_crit.max_iter = 10; params.term_crit.epsilon = 0.1; params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS; // cluster the data em_model.train( samples, 0, params, labels ); #if 0 // the piece of code shows how to repeatedly optimize the model // with less-constrained parameters (COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL) // when the output of the first stage is used as input for the second. CvEM em_model2; params.cov_mat_type = CvEM::COV_MAT_DIAGONAL; params.start_step = CvEM::START_E_STEP; params.means = em_model.get_means(); params.covs = (const CvMat**)em_model.get_covs(); params.weights = em_model.get_weights(); em_model2.train( samples, 0, params, labels ); // to use em_model2, replace em_model.predict() with em_model2.predict() below #endif // classify every image pixel cvZero( img ); for( i = 0; i < img->height; i++ ) { for( j = 0; j < img->width; j++ ) { CvPoint pt = cvPoint(j, i); sample.data.fl[0] = (float)j; sample.data.fl[1] = (float)i; int response = cvRound(em_model.predict( &sample, NULL )); CvScalar c = colors[response]; cvCircle( img, pt, 1, cvScalar(c.val[0]*0.75,c.val[1]*0.75,c.val[2]*0.75), CV_FILLED ); } } //draw the clustered samples for( i = 0; i < nsamples; i++ ) { CvPoint pt; pt.x = cvRound(samples->data.fl[i*2]); pt.y = cvRound(samples->data.fl[i*2+1]); cvCircle( img, pt, 1, colors[labels->data.i[i]], CV_FILLED ); } cvNamedWindow( "EM-clustering result", 1 ); cvShowImage( "EM-clustering result", img ); cvWaitKey(0); cvReleaseMat( &samples ); cvReleaseMat( &labels ); return 0; }
-
die fragen wären ja:
wo sind die daten (die random punkte) drinnen. ich schätz mal im samples.
und wenn ich dann clustere. sollte ich dann nicht ein mean wert und eine standardabweichung bekommen? wieso gebe ich die als NULL an?wenn sich wer auskennt, hätte ich mehr fragen