ist das das selbe?



  • Ich verzweifle an dieser aufgabe:

    a ^ ( log(b^n) ) ?= b ^ (n* log(a))

    keine Angabe einer Logarithmusbasis, sodass ich keinen Weg zur Umrechnung kenne.

    Nun stellt sich mir die Frage ob das überhaupt das selbe ist.
    Auf dem Taschenrechner bekomme ich allerdings immer SEHR ähnliche ergebnisse ...

    Wenn mir jmd sagen könnte dass das nicht geht oder mir im anderen Fall die Umformungen sagen würde wäre ich glücklich für heute



  • hmm ich hab jetzt mal aus spass die basis des logarithmus auf x gesetzt, dann hauts hin



  • normalerweise gib es für logarithmus folgende "defaults",
    wenn keine Basis angegeben ist:

    log: Basis 10
    ln: Basis e
    lb: Basis 2



  • branleb schrieb:

    normalerweise gib es für logarithmus folgende "defaults",
    wenn keine Basis angegeben ist:

    log: Basis 10
    ln: Basis e
    lb: Basis 2

    Statt lb ist es normalerweise ld wie Logarithmus dualis und sich auf "das Normale" zu verlassen kann oft in die Hose gehen. Gerade in der Physik meint log meistens den natürlichen Logarithmus. Für den zehner gibts sonst noch lg. Zumindest lg, ln und ld sind eindeutig, bei log sollte man immer vorsichtig sein.



  • Jan schrieb:

    branleb schrieb:

    ...
    lb: Basis 2

    Statt lb ist es normalerweise ld wie Logarithmus dualis

    Ernsthaft? ld habe ich noch nie gesehen, lb hingegen schon...

    Jan schrieb:

    und sich auf "das Normale" zu verlassen kann oft in die Hose gehen. Gerade in der Physik meint log meistens den natürlichen Logarithmus. Für den zehner gibts sonst noch lg. Zumindest lg, ln und ld sind eindeutig, bei log sollte man immer vorsichtig sein.

    Wenn gar keine Basis spezifiert ist, habe ich 10 als standard bisher kennengelernt. Danke für den hint...
    Drauf verlassen ist natürlich blöd, aber wenn man nicht mehr infos hat?



  • Die Basis ist doch egal, solange es bei beiden Logs die gleiche Basis ist. Wegen log(a^n) = n*log(a) läuft es darauf hinaus, zu zeigen, dass a^log(b) = b^log(a) ist. Gehen wir von der Basis z aus, dann ist bekanntlich log_z(a) = ln(a) / ln(z). Also ist a^log_z(b) = exp(log_z(b)*ln(a)) = exp(ln(b)/ln(z)*ln(a)) = exp(ln(b)*ln(a)/ln(z)) = exp(ln(b)*log_z(a)) = b^log_z(a).

    JFTR: Ich hab sowohl ld als auch lb schon gesehen. :p


Log in to reply