Wahrscheinlichkeit beim Würfeln berechnen


  • Mod

    Da es wohl untergegangen ist:

    @SeppJ sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    Binomialverteilung.

    !
    Du sucht entweder die Binomialverteilung(3 Versuche, 1/6 Chance) an der Stelle 2 (für 2 Erfolge) oder die Summe der Stellen 2 und 3. Je nachdem, ob du einen Pasch als genau 2 Erfolge oder als 2 oder mehr Erfolge betrachtest.

    Die PDF der Binomialverteilung(3 Versuche, 1/6 Chance) ist P (X)=1/216 5^(3 - x) binomial(3, x).
    binomial(3,2) ist 3, binomial(3,3) ist 1. Also hat man für genau 2 Zweier eine Chance von 15/216 = 5/72, oder für 2 oder mehr Zweier 5/72 + 1/216 = 2/27.



  • @SeppJ sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    Binomialverteilung.

    Negative Binomialverteilung?

    R:

    result <- pnbinom(1, 2, 1/6)
    result
    
    0.07407407
    

    Aber verstehe nicht warum diese Eingabe dieses Resultat zeigt. Aber ich muss jetzt eh los.
    Danke für alles...


  • Mod

    @titan99_ sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    @SeppJ sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    Binomialverteilung.

    Negative Binomialverteilung?

    Hab ich irgendwo was von negativ geschrieben?

    Hier in diesem speziellen Fall suchst du die normale Binomialverteilung. Siehe meine Rechnung oben, die - oh Wunder - auf das gleiche Ergebnis kommt wie die Abzählvariante und die manuelle Kombinatorik. Je nach genauer Formulierung deines Zufallsexperiments kann es auch sein, dass du andere Verteilungen brauchst. Die geometrische und die negative Binomialverteilung kommen bei Würfelspielen auch oft vor.

    Ist zwar vielleicht etwas langweilig, auf fertige Formeln zu verweisen, aber mit der Abzählvariante kommt man ja schon bei 3 Würfeln an die Grenzen, und jedes mal neu alles her zu leiten treibt einen ja auch irgendwann in den Wahnsinn. Für Würfelspiele willst du daher vielleicht mal alle diskreten Wahrscheinlichkeitsverteilungen für Experimente mit Zurücklegen ansehen.



  • Man kann die Whrs. auch durch eine rekursive Funktion bestimmen, glaub ich... Aber ich bin da nicht mehr so sattelfest, denn Stochastik liegt bei mir schon etwas zurück. 😉 Eine der Vorlesungen, nach deren Bestehen es zuweilen Literweise Bier fließten können. 😉


  • Mod

    @EinNutzer0 sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    Man kann die Whrs. auch durch eine rekursive Funktion bestimmen, glaub ich... Aber ich bin da nicht mehr so sattelfest, denn Stochastik liegt bei mir schon etwas zurück. 😉 Eine der Vorlesungen, nach deren Bestehen es zuweilen Literweise Bier fließten können. 😉

    Meinst du damit, dass der Binomialkoeffizient ganz nett rekursiv definiert werden kann?



  • @SeppJ sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    dass der Binomialkoeffizient ganz nett rekursiv definiert werden kann?

    Ja



  • Steh grad völlig auf dem Damm (Schlauch).

    In meinem Gehirn ist Leere, Wut, Verzweiflung, Verwirrung usw. wo die Antwort sein sollte, das tut dem Oberstübchen weh. Vor allem wenn vermutlich bereits eine falsche Antwort gegeben wurde, dies aber ausserhalb einer sog. "sandbox" Link Text.

    Zur Frage: Ist es richtig, wenn einem Lottospieler empfohlen wird, er solle doch 16 Lottoscheine kaufen, dann ist die Wahrscheinlichkeit 16 mal höher zu gewinnen?

    Wie zeigt man das kombinatorisch? Also oben konnte doch gezeigt werden, dass wenn man 16 mal statt einmal würfelt, die Wahrscheinlichkeit nicht 16 Mal höher ist.


  • Mod

    @titan99_ sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    Zur Frage: Ist es richtig, wenn einem Lottospieler empfohlen wird, er solle doch 16 Lottoscheine kaufen, dann ist die Wahrscheinlichkeit 16 mal höher zu gewinnen?

    Wie zeigt man das kombinatorisch? Also oben konnte doch gezeigt werden, dass wenn man 16 mal statt einmal würfelt, die Wahrscheinlichkeit nicht 16 Mal höher ist.

    Weil das zwei verschiedene Experimente sind. 16x hintereinander mit einem einzelnen Tipp Lotto spielen ist was anderes, als mit 16 (verschiedenen) Tipps einmal Lotto zu spielen.

    Auf den Würfel übertragen:
    16x hintereinander Lotto spielen ist wie 16x Würfeln, und zu versuchen, bei jedem Versuch das Ergebnis vorher zu sagen. Man kann richtig liegen, mehrmals sogar, muss aber nicht.
    16x mit anderen Tipps das gleiche Lotto spielen, ist wie einmal Würfeln, und eine gewisse Menge von Tipps abgeben zu dürfen, was das Ergebnis sein wird. Wenn man 2 Tipps geben darf, ist die Wahrscheinlichkeit natürlich doppelt so groß wie bei nur einem Tipp. Und bei 16 Tipps ist es sogar garantiert, dass man richtig liegt. Aber man kann auch höchstens einmal richtig liegen.



  • @SeppJ sagte in Wahrscheinlichkeit beim Würfeln berechnen:

    16x mit anderen Tipps das gleiche Lotto spielen, ist wie einmal Würfeln, und eine gewisse Menge von Tipps abgeben zu dürfen, was das Ergebnis sein wird. Wenn man 2 Tipps geben darf, ist die Wahrscheinlichkeit natürlich doppelt so groß wie bei nur einem Tipp. Und bei 16 Tipps ist es sogar garantiert, dass man richtig liegt. Aber man kann auch höchstens einmal richtig liegen.

    Danke für die Antwort. Bei einem Würfel, ist dann bei 6 Tipps bereits garantiert, richtig zu liegen.


  • Mod

    Wenn man sich clever anstellt, ja. Es soll ja auch Lottospieler geben, die mehrmals den gleichen Tipp geben, aber man erwartet sicher keine optimierte Spielstrategie von einem typischen Lottospieler.


Log in to reply